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We study relaxation properties of two-body inelastic collisions pro-

cesses on the mean-field level. We show that this process exhibits

multiscaling asymptotic behavior as the underlying distribution is

characterized by an infinite set of nontrivial exponents. These

nonequilibrium relaxation time scales are found to be closely related

to steady state cumulants of the velocity distribution in the presence

of noise. This behavior can be viewed as generalized fluctuation-

dissipation relations.
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Inelastic Collisions
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• Restitution coefficient r = 1− 2γ

• Energy Dissipation

∆E ∝ γ(1 − γ)(u1 − u2)
2/4

Motivation

• Granular gases: interparticle collisions are dissipative [1-2]

• Traffic flows: headway distribution [3]

• Combinatorial exchange processes [4]

• Exchange processes: wealth [5], opinion/voting



Mean-Field Model

• Infinite particle system

• Identical particles

• Two-body inelastic collision

• Velocity independent collision rates [6]

Problem Set-Up

• Momentum is conserved 〈v〉 = const.

• System is Galilean invariant (under v → v− v0 transformation)

• Work in center of mass reference frame, 〈v〉 = 0

• Velocity distribution function = P (v, t),
∫

dvP (v, t) = 1

• Arbitrary initial conditions P (v, t = 0) = P0(v)

Questions

• Kinetics of approach to trivial final state P (v, t) = δ(v)

• Statistics of steady state when coupled to heat bath



Kinetic Theory

• Formal Boltzmann equation

∂P (v, t)

∂t
=

∫ ∞

−∞

∫ ∞

−∞
du1 du2 P (u1, t)P (u2, t)

× [δ(v − γu1 − (1− γ)u2)− δ(v − u2)] .

• Compact Boltzmann equation

∂P (v, t)

∂t
+ P (v, t) =

1

1− γ

∫ ∞

−∞
duP (u, t)P





v − γu

1− γ
, t



 .

• Evolution equations for Fourier transform

P̂ (k, t) =
∫

dv eikv P (v, t)

∂

∂t
P̂ (k, t) + P̂ (k, t) = P̂ [γk, t] P̂ [(1− γ)k, t].

• Evolution equations are exact

• Nonlinear and nonlocal structure

Simple structure, yet intractable



Asymptotic Analysis - Moments

• Moments of the velocity distribution

Mn(t) =
∫

dv vnP (v, t)

• Closed hierarchy of evolution equations for the moments

Ṁn + anMn =
n−2
∑

m=2
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γm(1− γ)n−mMmMn−m

• Hierarchy is solved recursively. Leading asymptotic behavior can

be evaluated (using the conservation law a0 = 0 and the lemma

an < am + an−m when 1 < m < n− 1)

Mn(t) ∼ e−ant when t → ∞

• Decay coefficients an ≡ an(γ) = 1− (1− γ)n − γn

• Every moment decays in a different fashion!

Multiscaling asymptotic behavior



Singularities in Compact Distributions

• Starting with compact distributions, a progressively weaker set

of singularities (discontinuities in derivatives of growing order)

occur at (for example, we take γ = 1/2 and support in [-1,1])
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FIG. 1. Development of a singularity for a compact initial distribution. Shown is the probability

distribution obtained by simulating the collision process with γ = 1/2. The data represents an

average over 200 independent realization in a system with 107 particles, starting from a uniform

distribution in the range [−1, 1].



Steady state in presence of energy input

• Add white noise
dvj

dt |heat = ηj 〈ηi(t)ηj(t
′)〉 = 2Dδijδ(t− t′)

• Steady state equations in Fourier space P̂∞(k) = P̂ (k, t =∞)

(1 +Dk2)P̂∞(k) = P̂∞[γk] P̂∞[(1− γ)k]

• Recursive solution (using P̂∞(0) = 1 and P̂
′
∞(0) = 0)

P̂∞(k) =
∞
∏

i=0

i
∏

j=0

[

1 + γ2j(1− γ)2(i−j)Dk2
]−(ij) .

• Explicit solution: simplify by taking logarithm

P̂∞(k) = exp
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na2n(γ)
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• Cumulants κn related to kinetic decay coefficients an

κ2n =
(2n− 1)!Dn

2a2n

Generalized fluctuation-dissipation relations



Conclusions

• Multiscaling asymptotic behavior

• Singularities for compact distributions

• Steady-state cumulants in steady state directly related to kinetic

decay coefficients
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